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The electric microfield distribution �MFD� at a neutral point is studied for two-component �TCP� electron-
ion plasmas using molecular-dynamics simulation and theoretical models. The particles are treated within
classical statistical mechanics using an electron-ion Coulomb potential regularized at distances less than the de
Broglie length to take into account quantum-diffraction effects. Corrections to the potential-of-mean-force
exponential �PMFEX� approximation recently proposed for the MFD at an impurity ion in a strongly coupled
TCP �Nersisyan et al., Phys. Rev. E 72, 036403 �2005�� are obtained and discussed. This has been done by a
generalization of the standard Baranger-Mozer and renormalized cluster expansion techniques originally de-
veloped for the one-component plasmas to the TCPs. The results from this theoretical model are compared with
those from molecular-dynamics simulations. In particular, for a strongly coupled TCP with an ionic charge
Z�5 the agreement with numerical simulations is excellent. For still increasing coupling we furthermore
found that the PMFEX scheme becomes insufficient to predict the MFD at a neutral point, while its improved
version quite well agrees with the simulations.
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I. INTRODUCTION

The determination of the electric microfield distribution at
a neutral atom or charged impurity ion �radiator� in a plasma
is an important tool for the understanding of many spectro-
scopic experiments �1,2�. Since the pioneering work of
Holtsmark �3�, who completely neglected correlations be-
tween the particles �ideal plasma�, many efforts have been
concentrated on an improved statistical description of the
microfield distribution. The first theory which goes beyond
the Holtsmark limit and which is based on a cluster expan-
sion similar to that of Ursell and Mayer �4� was developed
by Baranger and Mozer �5,6�. In this approach the microfield
distribution is represented as an expansion in terms of corre-
lation functions which has been truncated on the level of the
pair correlation. The latter is treated in the Debye-Hückel
form which corresponds to the first order of the expansion in
the coupling parameter. The theory by Baranger and Mozer
was improved by Hooper �7,8�. He reformulated the expan-
sion of the microfield distribution in terms of other functions
by introducing a free parameter which was adjusted in such a
way so as to arrive at a level where the resulting microfield
distribution did not depend on the free parameter anymore.
However, it was argued that such a method is only valid at
small coupling parameters, where the correction to the Holts-
mark distribution, corresponding to the first term in the se-
ries, is small. The first theory capable of providing reliable
numerical results for strongly coupled plasmas, known as the
adjustable-parameter exponential �APEX� approximation,
was proposed by Iglesias and co-workers �9,10�. It involves a

noninteracting quasiparticle representation of the electron-
screened ions. This phenomenological but highly successful
approximation is based on a parametrization of the electric
microfield produced on a radiator with the Debye-Hückel-
type screened interaction with unknown screening length.
This free parameter is then adjusted in such a way to yield
the correct second moment of the microfield distribution. Af-
terwards, the APEX model was substantially improved for
neutral radiators using renormalized correlation functions
and electric fields �11� �we refer the reader to Ref. �12� for a
recent review�.

Most of this work was done on one-component plasmas
�OCPs� and thus neglects the influence of the attractive in-
teractions between electrons and ions. This is well justified
for weakly coupled plasma where the low-frequency ionic
field and the high-frequency electronic field can be handled
separately for spectra modeling as, e.g., considered in the
early approaches �5–8�. Here the electron-ion interaction
only slightly modifies these contributions. But there is an
increasing number of experiments of interest which are far
beyond such parameter regimes �see, e.g., Refs. �13,14��. In
such cases a simple superposition of the electronic and ionic
fields becomes insufficient due to strong nonlinear effects
and the total field in a two-component plasmas �TCP� should
serve as the starting point for spectra modeling. The related
microfield distribution �MFD� including the full attractive
electron-ion interaction has thus been attracting more and
more attention and has already been studied, e.g., in Refs.
�15–19�. In Ref. �15� the low-frequency component of the
microfield was calculated within the linear response treat-
ment taking strong correlations into account via local field
corrections. In Ref. �16� the MFD in a TCP with partially
degenerate electrons was investigated, while in Ref. �17� the
problem of the attractive interaction was considered for a
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single but highly charged impurity ion immersed in an elec-
tron plasma. In recent papers �18,19� we studied the MFD in
a strongly coupled classical �nondegenerated� TCP beyond a
perturbative treatment. In such systems the electron-ion at-
tractive interaction drastically changes the physical proper-
ties compared to classical OCPs �see, e.g., Ref. �17��. But the
thermodynamic stability of a TCP requires at least some
quantum features for the electron-ion interaction at short dis-
tances, which are taken into account here by using a regular-
ized electron-ion potential �20–22�. This enables the applica-
tion of classical statistical mechanics and classical
molecular-dynamics �MD� simulations as reference for theo-
retical treatments. As in Ref. �15�, the theoretical scheme
presented in Ref. �18� is based on the potential-of-mean-
force exponential �PMFEX� approximation. It exactly satis-
fies the sum-rule requirement arising from the second mo-
ment of the microfield distribution without introducing
adjustable parameters. Comparisons of the PMFEX calcula-
tions with the MD simulations for the electric fields at the
highly charged points relevant for laser-produced plasmas
show, in general, an excellent agreement even for large cou-
pling �18�. First applications of the PMFEX model to the
MFD at a neutral point showed, however, that this case needs
further attention and improvement, similar as it occurs in the
APEX scheme when considering the microfield distribution
at neutral point; see Ref. �11�. In this paper we therefore
focus on improvements of the description of the MFD at a
neutral point in two-component plasmas. This is done by
introducing the key ideas of the PMFEX approximation in
the standard Baranger-Mozer cluster representation for the
microfield distributions �5,6�. In this way contact between
PMFEX and standard weak coupling theories is established,
where the PMFEX approximation provides the leading term
in a series from which corrections can be calculated explic-
itly.

The paper is organized as follows. In Sec. II, we define
the basic parameters of interest for a TCP and the MFD in a
classical canonical ensemble. In Sec. III the Baranger-Mozer
treatment is reviewed for the present case of a TCP and the
structure of the resulting cluster series is discussed. The basic
assumptions of the PMFEX approximation are briefly given
and motivated in Sec. IV. Next, a formal relationship of the
PMFEX approximation to the Baranger-Mozer series is es-
tablished and the first two terms of a renormalized cluster
series are given explicitly. To test the proposed theoretical
scheme its predictions for the MFD at a neutral point are
compared with the results from classical MD simulations in
Sec. V. Our findings are summarized and concluded in Sec.
VI. The exact second moment of the microfield distribution
at a neutral point is considered in the Appendix.

II. MICROFIELD DISTRIBUTION IN A TCP

A. Basic parameters for the TCP

We consider a neutral and isotropic two-component
electron-ion plasma consisting of ions and electrons at a tem-
perature T in a volume �. The particles are assumed to be
classical and pointlike. The average densities, charges, and
masses of the ions and electrons are ni, ne, and Ze, −e, and

mi, m, respectively. We assume that the density of radiator
ions or atoms is small, nR�ni;e, and thus consider only one
radiator ion with charge ZRe �or a neutral atom with ZR=0�
in our calculations �throughout this paper the index R refers
to the radiators�. Because of the charge neutrality we have
ne=niZ.

We now introduce the Coulomb coupling parameters ���.
Introducing the Wigner-Seitz radii—i.e., the mean electron-
electron, electron-ion, and ion-ion distances—through the re-
lations ae

−3=4�ne /3, a−3=4�n /3, and ai
−3=4�ni /3 �where

n=ne+ni is the plasma total density�, these parameters are
defined as

�ee =
eS

2

aekBT
, �ei =

ZeS
2

akBT
, �ii =

Z2eS
2

aikBT
, �1�

respectively, where eS
2=e2 /4�	0. Note that

�ee =
�ei

�Z2�Z + 1��1/3 , �ii =
Z�ei

�Z + 1�1/3 . �2�

In a plasma with Z=1 we obtain �ee=�ii=2−1/3�ei, while in a
plasma with highly charged ions �Z
1� �ii=Z2/3�ei
�ee
=�ei /Z. So in the TCP with uncorrelated electrons the ions
may be strongly correlated.

The Holtsmark field EH for a TCP is given by EH
3/2=EHe

3/2

+EHi
3/2 �see Ref. �18� for details�, where EHe and EHi are the

electronic and ionic Holtsmark fields, respectively, EHe
=CeF /ae

2 and EHi=CZeF /ai
2, with C= �8� /25�1/3 and eF

=e /4�	0. Since EHe=Z−1/3EHi, the electronic and ionic com-
ponents of a TCP with Z=1 contribute equally to the Holts-
mark field. For a completely ionized TCP with highly
charged ions the ions dominate EH. The definition of the
Holtsmark field EH for a TCP is equivalent to the obvious
relation n=ne+ni and can be represented as

EH =
CZeF

a2 , Z = �Z�1 + Z1/2�
�Z + 1� �2/3

, �3�

with an effective charge Z.
For the regularized pair interaction potential eS

2q�q�u���r�
with � ,�=e , i ,R, qe=−1, qi=Z, and qR=ZR, we here employ

u���r� =
1

r
�1 − e−r/���� . �4�

The cutoff parameters ��� are related to the thermal de Bro-
glie wavelengths, ���= ��2 /��kBT�1/2, where �� is the re-
duced mass of particles � and �. For large distances r
���� the potential becomes Coulomb, while for r���� the
Coulomb singularity is removed and u���0�=1 /���. By this
short-range effects based on the uncertainty principle are in-
cluded �20–22�. We point out that the dependence on the
physical parameters density and temperature is implicitly
contained in the parameters ��� and ���.

B. Microfield distribution in the canonical ensemble

The electric MFD Q�E� is defined as the probability den-
sity of finding a field E at a charge ZRe or a neutral particle,
located at r0, in a TCP with Ni ions and Ne electrons. This
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system is described by classical statistical mechanics in a
canonical ensemble of Ni+Ne+1 particles and temperature T.
The normalized probability density of the microfield E is
then given by �15,18�

Q�E� =
1

W
�

�

e−�TU�Te,Ti,r0��„E − E�Te,Ti,r0�…dr0dTedTi,

�5�

where �T=1 /kBT, Te= �r1 ,r2 , . . . ,rNe
	 and Ti

= �R1 ,R2 , . . . ,RNi
	 are the coordinates of electrons and ions,

respectively, and

W = �
�

e−�TU�Te,Ti,r0�dr0dTedTi �6�

is the canonical partition function. U�Te ,Ti ,r0� is the poten-
tial energy of the configuration given here by

U�Te,Ti,r0� = eS
2�1

2 

�,�,a,b

q�q�u����ra
��� − rb

�����

+ ZR

�,a

q�u�R��r0 − ra
������ �7�

in terms of the pair interaction potentials u���r� and u�R�r�,
where � ,�=e , i, ra

�e�=ra, and ra
�i�=Ra. In Eq. �7� the first sum

is restricted to a�b for identical particles, �=�. The total
electrical field E�Te ,Ti ,r0� acting on the radiator is given by
the superposition of electronic and ionic single-particle fields

E�Te,Ti,r0� = −
1

ZRe
�0U = 


a=1

Ne

Ee�r0 − ra� + 

a=1

Ni

Ei�r0 − Ra� .

�8�

As E��r�= r
r E��r�, we obtain for the electronic and ionic

single-particle fields Ee�r�=eFueR� �r� and Ei�r�=−ZeFuiR� �r�,
where the prime indicates derivative with respect to r.

The spherical symmetric interaction between plasma par-
ticles and the isotropy of the system allows us to introduce
the normalized microfield distribution P�E�=4�E2Q�E�. It
can be reexpressed in terms of the Fourier transform of Q�E�
through

P�E� =
2E2

�
�

0

�

T���j0��E��2d� ,

T��� = �
0

�

P�E�j0��E�dE , �9�

and

T��� = �ei�·E

=
1

W
�

�

exp�i� · E�Te,Ti,r0��e−�TU�Te,Ti,r0�dr0dTedTi,

�10�

where �¯ denotes a statistical average and j0�x�=sin x /x is
the spherical Bessel function of order zero. The coefficients

of the expansion of the function T��� at �→0 yield the even
moments of the microfield distribution,

T��� = 1 −
�2

6
�E2 +

�4

120
�E4 − ¯ . �11�

A similar expansion for the function L��� defined by T���
=e−L��� yields

L��� =
�2

6
�E2 +

�4

72
��E22 −

3

5
�E4� + ¯ . �12�

Therefore the Fourier transform of the MFD can be inter-
preted as a generating function for microfield even moments.
Equations �5�–�12� describe the total MFD at the position r0
of the radiator generated by both the statistically distributed
ions and electrons of the TCP. Since we are interested in
calculating the MFD, Eq. �9�, in an infinite system, the sta-
tistical average of any quantity becomes translationally in-
variant with respect to r0 and the location of the test charge
may be taken as the origin without loss of generality.

III. BARANGER-MOZER CLUSTER EXPANSION
FOR THE TCP

In this section we generalize the Baranger-Mozer �BM�
cluster expansion technique originally developed for one-
component plasmas �see, e.g., Refs. �5–8�� to the classical
TCPs. This method results from two transformations of Eq.
�5�. The first is motivated by the fact that the required aver-
age in Eq. �10� is the product of electronic and ionic single-
particle functions, ei�·Ee�ra� and ei�·Ei�Ra�, which have a value
close to one over some volume of the system. This suggests
a first transformation to the set of single-particle functions

�a
������ = ei�·E��ra

���� − 1. �13�

Using this transformation the exponential factor in Eq. �10�
becomes �for simplicity we drop the coordinate r0 of the
radiator�

exp�i� · E�Te,Ti�� = �
a=1

Ne

�1 + �a
�e������

b=1

Ni

�1 + �b
�i����� .

�14�

The introduced single-particle functions �a
��� have the advan-

tage to be zero over some volume. The spirit of this trans-
formation to the functions �a

��� is similar to the use of May-
er’s f functions for thermodynamic properties of gases �4�.
Substituting Eq. �14� into Eq. �10� leads in the thermody-
namic limit directly to the series

T��� = 1 + 

�



a=1

�
n�

a

a!
� �1

�������2
������ ¯ �a

������

�Ga
����Ta

����dTa
��� + 


a=1

�
ne

a

a! 
b=1

�
ni

b

b!
� �1

�e���� ¯ �a
�e����

��1
�i���� ¯ �b

�i����Gab
�ei��Ta

�e�,Tb
�i��dTa

�e�dTb
�i�, �15�

where Ta
���= �r1

��� ,r2
��� , . . . ,ra

���	 and dTa
���=dr1

���dr2
���

¯dra
���.
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Here Ga
����Ta

���� and Gab
�ei��Ta

�e� ,Tb
�i�� are equilibrium correlation

functions. The first quantity represents the probability den-
sity for a particles from plasma species � at r1

��� ,r2
��� , . . . ,ra

���

and the test particle at the origin. The second one describes
the correlations between a electrons at r1 ,r2 , . . . ,ra and b
ions at R1 ,R2 , . . . ,Rb involving the test particle. The range
of integration for each term in Eq. �15� is now restricted by
the �a

������ functions. However, this restriction is not uniform
with respect to �, and particularly for large values of � the
functions �a

������ can differ from zero over a correspondingly
large volume. Consequently, a second transformation is de-
sirable, T���=e−L���, whereby a standard theorem of equilib-
rium statistical mechanics �see, e.g., Ref. �23��, L���, is de-
termined from Eq. �15� as

L��� = − 

�



a=1

�
n�

a

a!
ha

������ − 

a=1

�
ne

a

a! 
b=1

�
ni

b

b!
hab

�ei���� . �16�

Here ha
������ and hab

�ei���� are given by

ha
������ =� �1

�������2
������ ¯ �a

�������a
����Ta

����dTa
���,

�17�

hab
�ei���� =� �1

�e���� ¯ �a
�e�����1

�i���� ¯ �b
�i����

��ab
�ei��Ta

�e�,Tb
�i��dTa

�e�dTb
�i�, �18�

and �a
��� and �ab

�ei� are the Ursell cluster functions for TCP
associated with the set of the usual correlation functions Ga

���

and Gab
�ei�, respectively. The functions �a

��� for electron-
electron and ion-ion interactions are expressed by the corre-
lation functions Ga

��� in the same manner as in the case of
corresponding OCP �see, e.g., Refs. �5–7��. Therefore, as an
example we consider here explicitly only the functions �ab

�ei�

which involve electron-ion interactions:

�11
�ei��r1,R1� = G11

�ei��r1,R1� − G1
�e��r1�G1

�i��R1� , �19�

�12
�ei��r1,R1,R2� = G12

�ei��r1,R1,R2� − G1
�e��r1�G2

�i��R1,R2�

− G1
�i��R1�G11

�ei��r1,R2� − G1
�i��R2�G11

�ei��r1,R1�

+ 2G1
�e��r1�G1

�i��R1�G1
�i��R2� , �20�

�21
�ei��r1,r2,R1� = G21

�ei��r1,r2,R1� − G1
�i��R1�G2

�e��r1,r2�

− G1
�e��r1�G11

�ei��r2,R1� − G1
�e��r2�G11

�ei��r1,R1�

+ 2G1
�e��r1�G1

�e��r2�G1
�i��R1� , �21�

etc., for pair and three-body correlations, respectively. The
higher-order Ursell functions involving �4 particles can be
constructed similarly. All single-particle Ursell functions are
here expressed by the ordinary pair correlation function be-
tween radiator and plasma particles of species �, �1

����r�
=G1

����r�=g�R�r� �18�. The significant difference between G
and � correlation functions is that the cluster functions �
vanish when any members of the particles are sufficiently far
apart, whereas the ordinary correlation functions G do not

have this property. In particular, for completely uncorrelated
systems of particles the many-body functions G tend to unity
while �→0 beginning with �11

�ei� and �2
���. Hence, the range of

integrals in Eq. �16� is controlled by both the functions
�a

������ and the Ursell functions. The latter restricts the inte-
gration to volumes characterized by the correlation length,
which depends on the thermodynamic-state condition, but is
independent of �. Qualitatively, therefore, the BM formalism
provides a series representation whose terms are controlled
by the range of �a

������ for small � and by the range of the
Ursell functions for large �.

Equations �16�–�18� together with the relation T���
=e−L��� constitutes the generalization of the Baranger-Mozer
cluster expansion technique to the TCPs. In contrast to the
BM theory developed for OCPs, Eq. �16� now involves terms
which are responsible for electron-electron, ion-ion, and
electron-ion attractive interactions. The BM result is easily
recovered from Eq. �16� by neglecting the last term as well
as one of two terms responsible for the interactions between
identical particles. In addition, for ideal TCPs �Holtsmark
limit� the second sum in Eq. �16� and all terms with a�2 in
the first sum vanish, and only the term with a=1 in the first
sum contributes to the MFD. It is easy to see that this term
coincides with the result of Ref. �18� derived for ideal TCPs.

From a practical point of view, it is too difficult to calcu-
late correlation functions of higher order than G2

��� and G11
�ei�.

For weakly coupled plasmas, the Ursell functions of order
�+1 are typically of the order of the plasma parameters to
the power �. Therefore Eq. �16� is usually truncated at first,
second, or in some cases third order. If the correlation func-
tions are expanded as well with respect to the plasma param-
eters and truncated at the corresponding order, the MFD with
Eqs. �16�–�18� can be evaluated analytically �see, e.g., Refs.
�5–8,24,25��. Obviously, such a method may be successful
only for weakly coupled plasmas. A possible extension to the
strongly coupled regimes requires that the BM representation
sufficiently rapidly converge to allow for a truncation after
the first two terms. This suggests, for instance, that the BM
series could be improved if the bare single-particle electric
fields in the � functions are replaced by screened fields rep-
resenting the effects of strong correlations in a plasma. The
formal procedure for carrying out such a “renormalization”
has been developed in Ref. �26� and has been previously
employed for OCPs �11�. In the next Sec. IV we extend this
renormalization procedure to the two-component plasmas.

IV. RENORMALIZATION OF THE BARANGER-MOZER
CLUSTER SERIES

A. PMFEX approximation as independent-particle model

The predictions of APEX approximation for the MFD
show excellent agreement with numerical simulation data for
OCPs. However, difficulties appear when one attempts to
extend the APEX scheme to a TCP, e.g., by assuming a
Debye-Hückel-type interaction separately for the electrons
and the ions and introducing two adjustable screening
lengths. Then the second moment sum rule becomes ambigu-
ous �see, e.g., Eq. �29� below� as it allows for many different
choices of the adjustable screening lengths. This can be
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cured for ionic mixtures by demanding that the second mo-
ment rule be satisfied species by species �see, e.g., Ref. �27��.
But this cannot be employed for a TCP with attractive
electron-ion interactions. Here the Debye-Hückel ansatz for
the electronic effective field is physically incompatible with
the second moment requirement as discussed in Ref. �15�.

In Refs. �18,19� we instead introduced the PMFEX ap-
proximation which links the MFD to the pair correlation
functions. To make further progress we briefly outline here
the basic concepts of the PMFEX approximation. We show
that similarly to the APEX approximation �see, e.g., Ref.
�9–11�� the PMFEX approximation is also an effective
independent-particle model. Based on this assumption the
MFD within PMFEX approximation is derived quite simply.
If all interactions between the plasma particles, except those
with the radiator, are neglected, then the Ursell functions �a

���

vanish for a�2 and �ab
�ei��Ta

�e� ,Tb
�i��=0 for arbitrary a and b.

The BM series �16� then reduces to only the leading term

L�0���� = − 

�

n�� �1
������g�R

�0��r1�dr1. �22�

The superscript �0� denotes the corresponding quantity with-
out interactions among plasma particles. The PMFEX ap-
proach retains the independent-particle form of �22�,

L�0���� → L��� = − 

�

n�� �1
������g�R

� �r1�dr1, �23�

with the assumption that the important effects of correlations
can be accounted for by an effective pair distribution func-
tion g�R

� �r1� and a screened field E��r1� replacing the single-
particle field E��r1� in �1

������:

�1
������ = ei�·E��r1� − 1. �24�

Some constraint must be imposed to determine g�R
� �r1�. As in

the case of the APEX approximation �9�, this is a require-
ment that the effective “quasiparticle” field due to the effec-
tive charge density at r1 be equal to the corresponding exact
field:

g�R
� �r1�E��r1� = g�R�r1�E��r1� . �25�

Assuming spherical symmetric interactions with E��r�
= r

rE��r� and E��r�= r
r E��r�, this condition then defines the

PMFEX model as

LPMFEX��� = 

�

4�n��
0

�

E��r�
1 − j0„�E��r�…

E��r�
g�R�r�r2dr .

�26�

In practice, g�R�r� is calculated from the hypernetted-chain
�HNC� integral equation �28,29� extended to the TCP �see,
e.g., Refs. �18,19��.

In the APEX model originally developed for classical
ionic OCPs with bare Coulomb interactions to determine the
effective field, a second requirement is needed. In Ref. �9�
the effective field E�r� is assumed as a Debye-Hückel-type
screened interaction with unknown screening length. This
free parameter is then adjusted in such a way so as to satisfy

the exact second-moment requirement. In contrast to the
APEX method the effective fields E��r� in the PMFEX
model are obtained automatically �see Ref. �18� for details�,
employing thermodynamic perturbation theory �30�. We re-
call here these effective fields for completeness. For simplic-
ity, assuming a Coulomb potential for the repulsive
interactions—i.e., �ee=�ii=0 �electron-electron and ion-ion
interactions�—and regularized one �see Eq. �4�� for electron-
ion interactions these fields read �18�

E��r� = E��r��1 +
4�n�

g�R�r��0

r

�g����� − gei�����2d�� ,

�27�

where E��r�=q�eF /r2 are the bare single-particle fields.
Based on the derivations given in Ref. �18� it is straightfor-
ward to show that the effective fields E��r� can be alterna-
tively represented as the logarithmic derivative of the radial
distribution functions �RDFs� g�R�r� as

E��r� =
kBT

ZRe

�

�r
�ln g�R�r�� , �28�

which is known as the potential-of-mean-force �PMF� ap-
proximation proposed by Yan and Ichimaru �15� �see also
Ref. �28��.

Using Eq. �12� we expand Eq. �26� around a value �=0
and find the second moment of the MFD in the PMFEX
model:

�E2PMFEX = 

�

4�n��
0

�

E��r�E��r�g�R�r�r2dr . �29�

Introducing now Eq. �28�, which is valid for a charged radia-
tor with ZR�0, in Eq. �29� automatically satisfies the exact
sum rule �E2PMFEX= �E2 without any adjustable parameter.
Here �E2 is the exact second moment of the MFD as derived
in Ref. �18� for the TCP; see also Eq. �A1�. Thus, if the
g�R�r� are known, the MFD can be calculated using Eqs. �9�,
�26�, and �28�. For the MFD at a charged radiator, taking
the required g�R from corresponding HNC calculations, the
PMFEX scheme has been tested by comparison with results
of MD simulations. Both the g�R from the HNC and the
MFD from the PMFEX approximation are in general in ex-
cellent agreement with the MD simulation, with some devia-
tions in a regime dominated by small local fields and hence
by small local electronic density.

In the case of a neutral radiator—i.e., in the limit ZR→0,
in which we are interested here—the PMF ansatz �28� is not
applicable as the RDFs tend to unity, g�R→1 and ln g�R�r�
→0. But based on the derivations given in Refs. �18� �see
also the Appendix for details�, the correct limit ZR→0 can be
done and results in the effective field of Eq. �27� when set-
ting g�R�r�=1. Calculating now Eq. �27� again with g��

taken from HNC and subsequently the MFD via Eqs. �9� and
�26� yields, however, a less satisfactory agreement with the
simulation than in the case of a charged point. This was the
major motivation to reformulate the theoretical scheme in
terms of a renormalized cluster series which will be outlined
in the next section.
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B. Renormalized cluster series

The comments at the end of Sec. III and the success of the
PMFEX approximation indicate that the Baranger-Mozer se-
ries could be improved if the single-particle field in the func-
tions �a

������ is replaced by a screened field representing the
effects of correlations in strongly coupled plasmas. In this
spirit, a new functional series is obtained in terms of the
renormalized functions �a

������ of Eq. �24� by the definition
L���a ;��=L��a ;��, which is easily obtained from the BM
series Eqs. �16�–�18� and the functional relationship between
�a

��� and �a
���. Introducing the functions R��r� by the relation

E��r�=R��r�E��r� �we assume spherical symmetric interac-
tions� with the effective E��r� and single-particle E��r�
fields, the functional relation between �a

��� and �a
��� is estab-

lished as

�a
������ = �1 + �a

�������1/R��ra� − 1. �30�

To obtain the new function L���a ;��, which must be multi-
linear with respect to �a �cf. Eqs. �16�–�18��, we expand the
�a

���-functions in Eq. �30� with respect to the �a
��� functions

�31�:

�a
������ =

�a
������

R��ra�
+

��a
�������2

2!

1

R��ra�� 1

R��ra�
− 1�

+
��a

�������3

3!

1

R��ra�� 1

R��ra�
− 1�� 1

R��ra�
− 2�

+ ¯ . �31�

Then elimination of �a
��� on the right-hand side of the equa-

tion L���a ;��=L��a ;�� using Eq. �31� yields the desired
renormalized cluster series

L���a;�� = − 

�



a=1

�
n�

a

a!
Ha

������ − 

a=1

�
ne

a

a! 
b=1

�
ni

b

b!
Hab

�ei���� .

�32�

Here

Ha
������ =� �1

�������2
������ ¯ �a

������La
����Ta

����dTa
���,

�33�

Hab
�ei���� =� �1

�e�����2
�e���� ¯ �a

�e�����1
�i�����2

�i���� ¯

��b
�i����Lab

�ei��Ta
�e�,Tb

�i��dTa
�e�dTb

�i�, �34�

with the generalized Ursell functions La
��� and Lab

�ei�, which are
recognized as the functional derivatives of Ha

������ and
Hab

�ei����, respectively. Explicitly the first- and second-order
generalized Ursell functions are found to be

L1
����r1� =

g�R�r1�
R��r1�

, �35�

L2
����r1,r2� =

g����r1 − r2�� − g�R�r1�g�R�r2�
R��r1�R��r2�

−
1

n�

��r1 − r2�g�R�r1�
R��r1� − 1

R�
2�r1�

, �36�

L11
�ei��r1,R1� =

gei��r1 − R1�� − geR�r1�giR�R1�
Re�r1�Ri�R1�

, �37�

which result in the first three terms in Eq. �32�:

L���� = L��� = − 

�

n�� �1
������

R��r�
g�R�r�dr

− 

�

n�
2

2 �� �1
�������2

������
R��r1�R��r2�

�g����r1 − r2��

− g�R�r1�g�R�r2��dr1dr2 +
1

n�
� ��1

�������2

�
1 − R��r1�

R�
2�r1�

g�R�r1�dr1�
− neni� �1

�e�����1
�i����

Re�r1�Ri�R1�
�gei��r1 − R1��

− geR�r1�giR�R1��dr1dR1. �38�

The first term of Eq. �38� is seen to be precisely the PMFEX
approximation �cf. Eqs. �23� and �25��. The factor of R��r�
occurs automatically here from the renormalization and
eliminates the assumption �25� of the PMFEX approxima-
tion.

Finally the angular integration in Eq. �38� can be per-
formed using spherical harmonic expansion �31�. This yields

L��� = LPMFEX��� + �L��� , �39�

where the first term is the PMFEX result, Eq. �26�, and the
second term represents the corrections due to the renormal-
ization:

�L��� = 2�

�

n��
0

�

�j0„2�E��r�… − 2j0„�E��r�… + 1�

�
R��r� − 1

R�
2�r�

g�R�r�r2dr − 4

�

n��
0

�

G����,k�

��S���k� − 1�k2dk − 8
neni

n
�

0

�

Gei��,k�Sei�k�k2dk

+
1

2
�LPMFEX

2 ��� − L0
2���� . �40�

Here L0��� is the LPMFEX��� given by Eq. �26�, but with
g�R�r�=1:

L0��� = 

�

4�n��
0

� 1 − j0„�E��r�…
R��r�

r2dr . �41�

In Eq. �40� the term S���k� �with � ,�=e , i� is the static
structure factor for the two-component plasma,
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S���k� = ��� + 4�n���
0

�

�g���r� − 1�j0�kr�r2dr , �42�

with ���=1, �ei=0, n��=n�, and nei=n=ne+ni, and
G���� ,k� is defined by

G����,k� = 

l=0

�

�− 1�l�2l + 1�Jl
�����,k�Jl

�����,k� , �43�

Jl
�����,k� = �

0

�

jl�kr��jl„�E��r�… − �l0�
r2dr

R��r�
. �44�

Also, jl�x� is the spherical Bessel function of order l. It
should be noted that for deriving the renormalized series Eq.
�32� we do not use the explicit functional form of E��r�.
Hence, in spite of its important role in the theory, the precise
functional form of the effective field E��r� may remain arbi-
trary. Moreover, it is straightforward to show that the gener-
ating function �16� as well as its renormalized version �32�
yields exact even moments of the MFD according to Eq. �12�
independently of the functional form of E��r�. In the present
context it might appear more reasonable to choose E��r� to
improve convergence of the renormalized series �32�. A simi-
lar procedure is used in thermodynamic perturbation theory
where the corresponding parameters of the leading term are
chosen to make the next order terms vanish �32�. But this is
not possible without making E��r� a function of � �see simi-
lar discussion in Ref. �11� in the context of the APEX ap-
proximation�. Here we consider for E��r� the mean-force
field as derived in Ref. �18� for the TCP �see also Eq. �28� as
well as Eq. �27� for the repulsive Coulomb interactions� and
which appears automatically from the second-moment con-
dition ��2L� /��2��=0= 1

3 �E2 for the renormalized function
L�, Eq. �32�. The theoretical scheme resulting from Eqs.
�39�–�44� is abbreviated as PMFEX�. It agrees for neutral
points quite well with the MD simulation results, as we will
show in the next section. It is straightforward to show that
the correction �L��� in Eq. �39� behaves as ��4 at �→0
and, therefore, does not contribute to the second moment.
Then the quantity �E2 receives a contribution only from the
PMFEX term in Eq. �39�.

V. MFD AT A NEUTRAL RADIATOR

In the case of a neutral radiator, ZR=0, the plasma-
radiator correlation functions are g�R�r�=1 and Eq. �40� is
simplified. In particular, the last term vanishes since
LPMFEX���=L0��� for g�R�r�=1. Thus, the generating func-
tion L��� of the MFD in the PMFEX� model is given by
L���=L0���+�L���, where L0��� is the ordinary PMFEX
expression, with g�R�r�=1; see Eq. �41�. The higher-order
corrections are involved in the second term �L���. The func-
tions R��r� are obtained from Eq. �27�,

R��r� = 1 + 4�n��
0

r

�g����� − gei�����2d� , �45�

which in the limit of small plasma-parameters ��ee→0� can
be evaluated explicitly using the Debye-Hückel approxima-

tion Re�r�=Ri�r��� r
� +1�e−r/�. Here �2=	0kBT / �Zne2� is

the Debye screening length. Thus, similar to the standard
PMFEX, the PMFEX� approximation links the MFD to the
RDFs. To obtain explicit results for the MFD the correspond-
ing RDFs and the static structure factors must be determined
first. This is done by solving numerically the HNC integral
equations �28,29� for the TCPs under consideration �see Ref.
�18� and references therein for more details�. For simplicity
we assume here bare Coulomb interactions for electron-
electron and ion-ion interactions—i.e., �ee�0 and
�ii�0—and a regularized electron-ion interaction with a pa-
rameter �ei=� fixed to �=0.2a or �=0.4a, where a
= �4�n /3�−1/3 is the Wigner-Seitz radius. For this kind of
TCPs, the HNC method has already been extensively tested
and evaluated by comparison of the resulting RDFs with
those obtained by classical MD simulations �18�. For the
numerical solution of the HNC scheme the dimensionless
parameter �ei=ZeS

2uei�0� /kBT=�ei�a /��—i.e., the maximum
value of the electron-ion interaction energy in units of
kBT—plays an important role �see also Ref. �17,18��. Within
our numerical treatment of the HNC equations a parameter
regime with �ei��c�Z ,�� is accessible, where the critical
values �c for �=0.1a, 0.2a, and 0.4a and the different stud-
ied TCPs �with ionic charge states Z=1, 3, 5, 7, 13, and 20�
are given in Table I. Beyond this value the HNC numerical
procedure does either not converge or ends up in unphysical
solutions. A similar behavior has been reported in Ref. �17�
for the case of an ion embedded in electrons. With the RDFs
and S���k� provided by the HNC scheme, the MFD P�E� in
the PMFEX� model is then calculated via Eqs. �9� and �39�–
�45� by standard numerical differentiation and integration
methods �33�. In practice, it appears sufficient to terminate
the sum in Eq. �43� at l=5.

To test the PMFEX� approximation and improvements
compared to the standard PMFEX approach the calculated
MFDs are confronted with those obtained by classical MD
simulations. In the MD simulations the classical equations of
motion are numerically integrated for Ni ions and Ne=ZNi
electrons interacting via the regularized potentials u���r�.
Such MD simulations have already been extensively tested
and successfully applied for investigations of the dynamic
properties �34–39� and the MFDs �18,19,40� of a TCP with
regularized potentials and closely related problems �17� �see
also Ref. �41� and references therein�. In the numerical MD
treatment all collisions and correlations in the simulated clas-
sical system are fully taken into account. Since both
treatments—the numerical MD simulation and the theoreti-
cal model—are based on exactly the same underlying classi-
cal TCP with effective electron-ion interaction, the MD
simulations thus provide reference data for approximative

TABLE I. Critical values �c�Z ,�� for some values of the ion
charge Z and three values of �=0.1a, 0.2a, and 0.4a.

� Z=1 Z=3 Z=5 Z=7 Z=13 Z=20

0.1a 6.87 7.59 7.67 7.62 7.59 7.63

0.2a 6.55 7.68 7.52 7.13 6.66 6.48

0.4a 8.90 12.73 10.76 9.39 6.75 6.00
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treatments like the discussed PMFEX and PMFEX�
schemes. The only limitation of the MD simulations is the
inevitable use of a finite simulation cube and periodic bound-
ary conditions. This leads to some differences in the long-
range contributions to the fields compared to theory �where
infinite systems are considered�, if the screening length is of
the order or larger than the size of the simulation box. As the
screening length gets shorter for increasing coupling or in-
creasing ionic charge Z �at given n ,T�, this becomes relevant
in particular for weak-coupling cases and may, at least in
part, explain some of the deviations between theory and MD
simulations which we observed in such cases �see below�.

For the comparison envisaged we investigated two-
component plasmas with different charge states Z=1, 3, 5, 7,
13, and 20 of the ions, corresponding to symmetric �Z=1�
and highly asymmetric densities of the plasma species, and
with certain values of the coupling parameters ��� �with
� ,�=e , i�. At a given parameter �, these coupling parameters
��� are chosen to avoid the mentioned numerical difficulties
with the HNC scheme and the formation of bound states in
classical MD simulations. This implies in particular that for
highly charged plasma ions with Z
1 plasma states with
strongly correlated ions ��ii
1� and strong electron-ion in-
teractions ��ei�1� are accessible, while the parameter �ee
remains quite small, �ee��ei /Z�1. But in the case of
highly charged ions even for �ee�1 the electrons neverthe-
less may be strongly correlated due to nonlinear effects �see
below�. The MD simulations providing the present MFDs
and RDFs have been performed using NMD=Ni+Ne=5376
particles. Further details on the applied MD technique can be
found in Refs. �34–37�. As the theoretical models and the
numerical solutions depend directly on the coupling param-
eters ��� and the regularization parameter �, we discuss, as,
e.g., in Refs. �17–19�, our results in terms of these param-
eters rather than in the underlying physical values of density
and temperature.

Before discussing the MFD itself, we first consider briefly
the RDFs and the validity of the HNC approximation for the
parameters at hand. For small and moderate coupling where
the parameter �ei is well below the critical value �c, the
RDFs as either calculated by the HNC scheme or extracted
from the MD simulations are always in perfect agreement
�see, e.g., the corresponding examples given in Ref. �18��.
Some typical examples for the RFDs at rather large coupling,
where some deviations between HNC and MD may show up,
are given in Figs. 1 and 2. Due to the regularization of the
electron-ion interaction the RDF, gei�r� is finite in the limit
r→0 �not visible in Figs. 1 and 2� and can be approximated
as gei�0��exp��ei /R� with R=1+ �� /a��3�ei�1/2; see Refs.
�17,18�. Thus the RDF gei�r� shows the expected growth of
correlations with increased coupling and decreased regular-
ization parameter, where the HNC scheme tends to overesti-
mate the value of gei�0� �not visible in the figures�. For ex-
ample, for ions with charge state Z=7, gei

HNC�0��57.4,
gei

MD�0��48.8 and gei
HNC�0��107.3, gei

MD�0��96.4 with �
=0.2a, �ee=0.15 and �ee=0.18, respectively. At strong cou-
pling deviations also occur in the electron-electron RDF
gee�r� at small r �as in the case of Z=5 and Z=7�. The strong
electron-ion interaction increases the electron density around
the highly charged ion which introduces additional correla-

tions between the electrons. This increases the probability of
close electronic distances and results in the maxima in gee�r�
at distances r�a. This effect is obviously again overesti-
mated in the HNC approach.

In Figs. 3–8 we next compare the MFDs calculated from
the PMFEX �dashed lines� and PMFEX� �solid lines�
schemes as well as from MD simulations �solid circles�
where the electric microfields are scaled in units of the Holts-
mark field EH �see Eq. �3��. In addition, the open circles are
the Holtsmark MFDs for a TCP with Coulomb potential and
the MFDs predicted by the first two terms of the standard
BM series Eqs. �15�–�21� are shown as triangles. To demon-
strate and test the proposed theoretical scheme we focus here
on cases of strong coupling where the PMFEX and
PMFEX� results differ—i.e., where the higher-order correc-
tions �L���, Eq. �41�, substantially contribute to the gener-
ating function L���=L0���+�L���. In all cases considered,
however, the MFDs obtained both from the PMFEX and
PMFEX� treatments strongly differ from the standard BM
electric field distributions and significantly improve the MFD
at a neutral point compared to such weak-coupling ap-
proaches.

From the observed agreement with the MD simulations
we found that the PMFEX� scheme substantially improves
the PMFEX model for TCPs with highly charged ions,
whereas no clear improvement of the PMFEX� method
compared to the PMFEX can be seen in the case of a TCP
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FIG. 1. RDFs g���r� for plasmas with �=0.2a, Z=5, and �ee

=0.25 �a� and Z=20 and �ee=0.03 �b�. The lines correspond to the
HNC approximation, while the symbols denote the MD simulations.
The different lines represent gee �solid lines�, gii �dashed lines�, and
gei �dotted lines�.
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with low ion charge. See the examples with Z=1,3 ,5, Figs.
3–5, compared to the obvious superiority of PMFEX� in the
examples with Z�5, Figs. 6–10. The deviations between
theory and MD for low Z�5 may be explained, at least in
part, by the finite size of the simulation cube as outlined
above. But this is needed together with a possible improve-
ment of the theoretical model by adding higher orders of the
further renormalized BM series investigations. We like to
stress, however, that also for Z�5 �Figs. 3–5� the PMFEX�
method yields a much better description of the MFD than the
standard BM approach. And for ion charges Z�5, Figs. 6–8,
the PMFEX� predictions are in excellent agreement with
the MD results �except for some smaller values of P�E� near
the maxima�. Here, the rather large deviation of the PMFEX
method from the PMFEX� method toward a higher prob-
ability of low fields �in particular in Figs. 6 and 8� indicates
that the PMFEX method applied to the field at a neutral point
does not correctly account for perturber-perturber correla-
tions and, therefore, underestimates the MFDs at large fields.
As expected for ZR=0, all distributions shown in Figs. 3–8
merge at large electric fields, �=E /EH�6, with the Holts-
mark distribution with the asymptotic behavior PH���
�1.496�−2.5. This indicates that due to electron-electron and
ion-ion Coulomb interactions with �ee��ii�0, the second
moments of the MFDs shown in Figs. 3–8 do not exist; see
also Eq. �A7� derived in the Appendix.

To gain some more insight into the features and the range
of validity of the PMFEX and PMFEX� models we consider
further increased coupling parameters as in Figs. 9 and 10. In
the PMFEX scheme and for large values of �ee the effective

fields at large distances behave as E��r�� 1
r e−arcos�br�. Here

a and b are some parameters increasing with �ee, whereby
the involved screening length a−1 does not necessarily coin-
cide with the Debye length �. The oscillatory nature of the
effective fields drastically changes the properties of the gen-
erating function L0��� in the PMFEX approximation �see Eq.
�41��, which becomes negative at �EH�1. This is not the
case in APEX approximation �as well as in the PMFEX ap-
proximation for a charged impurity ion—i.e., for the MFD at
a charged point� where the effective field is treated in Debye-
Hückel form and thus is positive and decreases monotoni-
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FIG. 2. Same as Fig. 1 for Z=7, �=0.2a, and �ee=0.15 �a� and
�ee=0.18 �b�.
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FIG. 3. Normalized electric microfield distributions for a plasma
with Z=1, �=0.4a, �ee=�ii=1, and �ei=3.15 �top� and �ee=�ii

=2.5 and �ei=7.87 �bottom� as a function of the electric field in
units of EH. The dashed and solid curves are the results of the
PMFEX and PMFEX� models, respectively. The solid circles rep-
resent the MFD from the MD simulations. The Holtsmark and stan-
dard Baranger-Mozer distributions are also shown as open circles
and triangles, respectively.
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cally with r. Therefore the � integration in Eq. �9� diverges
and hence the PMFEX model becomes invalid for neutral
radiators �ZR=0� �and no curves for the PMFEX model can
be given in Figs. 9 and 10�. But even in this extreme regime
the PMFEX� model remains valid and the agreement with
MD simulations is still quite good for the lower charge state
Z=7 shown in Fig. 9 �although not as good as in Fig. 6� and
almost perfect for the highly charged plasma ions �Z
=13,20� as shown in Fig. 10.

As discussed above, some deviations between the HNC
scheme and MD simulations occur in the electron-electron
RDF gee�r� at small distances r�a for TCPs with Z=5 and
Z=7; see the top panel of Fig. 1 and Fig. 2. Similarly the
static structure factor See�k� obtained from the HNC scheme
deviates from MD data at ka�1. This may be critical for the
accuracy of the electronic effective field, Eq. �45�, and hence
for the generating function L���, Eqs. �39�–�41�, calculated
from the HNC approximation. Since the generating function
is involved in the exponential factor e−L���, even small de-
viations in L��� result in some appreciable deviations in the
MFD. We therefore expect that the PMFEX� predictions for
the cases of Z=5 and Z=7 as presented in Figs. 5 and 9,
respectively, will further improve if the MD data for the RDF
gee�r� is used as input.

VI. DISCUSSION AND CONCLUSION

In this paper we investigate the microfield distributions in
a two-component plasmas with attractive electron-ion inter-

actions. To this end we proposed in Ref. �18� the PMFEX
model, which predicts the MFD very accurate in the case of
a charged impurity ion, but requires further improvement for
describing the MFD at a neutral point. It was thus our objec-
tive here to derive corrections to the PMFEX model by em-
ploying a renormalization of the standard Baranger-Mozer
cluster expansion technique. For testing this amended theo-
retical scheme, denoted as PMFEX�, we focused on its ca-
pability to predict based on the HNC treatment of static cor-
relations the MFD at a neutral point whereby MD
simulations of the same underlying classical TCPs are pro-
viding the reference data. Here one of the basic assumptions
is the regularization of the attractive electron-ion interaction
at short distances to introduce quantum-diffraction effects in
the employed classical approach. For the repulsive electron-
electron and ion-ion interactions we assumed a bare Cou-
lomb potential, for simplicity.

As examples, classical TCPs with ionic charge states Z
=1,3 ,5 ,7 ,13,20 and hence with both symmetric and largely
asymmetric densities of the plasma species were considered.
Our treatment is limited to a parameter regime with ���c,
where the critical values �c for �=0.1a, 0.2a, and 0.4a are
shown in Table I. Within this parameter regime the g���r�
from the HNC equations agree well with the MD simulations
�except the correlation function gee�r� for the cases given in
Figs. 1 and 2�. At a further increase of the coupling and thus
values of � well beyond these critical �c the HNC equations
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either do not converge or end up in unphysical solutions. As
we can deduce from our MD simulations, these are param-
eter regimes where a significant amount of bound states are
formed in these classical systems.

For high charges of the plasma ions, Z�5, the PMFEX
model is substantially improved by the new scheme and the
agreement of the PMFEX� model with the MD simulations
is excellent, as shown in Figs. 6–8 and 10. For further in-
creasing coupling the PMFEX scheme even becomes invalid

while the PMFEX� approach still works and yields good or
almost perfect agreement with the MD; see Figs. 9 and 10.
For a TCP with light ions—e.g., the case of Z=3, Fig. 4—the
PMFEX and PMFEX� approaches differ, but both some-
what deviate from the MD simulations as they do in the
cases of Z=1, Fig. 3, and Z=5, Fig. 5. This regime of large
coupling but moderate ionic charge state Z still needs some
further investigation; probably, the renormalized Baranger-
Mozer series should be truncated here at higher orders.

In summary, we note that the PMFEX approximation in-
corporates some key features of the MFD, in particular for
large microfields E �small � values�. The large fields are
predominantly due to configurations with a single-plasma
particle near the position of the radiator. In this case the
perturber-perturber correlations are less important and the
PMFEX model as an independent-particle model is accurate
for both neutral and charged radiators. The behavior of the
MFD at large E is closely related to the behavior of the
generating function L��� at small � and how much accurate
the exact second moment is involved in the model. At small
� the generating function behaves as L������2 /6��E2 �see
Eq. �12��, where the second moment �E2 is exactly involved
in the PMFEX model. Furthermore, the microfields in the
large-field regime are asymptotically Gaussian distributed
and characterized by the second moment �E2. As discussed
above, this is, however, not so for a neutral radiator and
assuming bare Coulomb interactions between plasma par-
ticles where L��� behaves as ��3/2 at small � and the MFDs
are similar to the Holtsmark distribution at large E. Con-
versely, the small microfields �large � values� are due to the
additive effects of many particles at large distances and the
PMFEX approximation is again accurate �18� except in the
case of the neutral point where some deviations from MD
simulations occur; see Figs. 3–8 and Ref. �19� for other ex-
amples. Therefore, the main uncertainty in the PMFEX
model remains the domain of the intermediate configurations
with E�1 and ��1 �in units of EH and 1 /EH, respectively�.
Apparently, this domain is reduced by means of the renor-
malized �screened� fields E��r� and the PMFEX model is
much more adequate compared to the standard Baranger-
Mozer �second-order� treatment. In the PMFEX� model, on
the other hand, imposing the renormalization procedure on
the standard Baranger-Mozer series substantially improves
their convergency, since �a

������ tends to zero for the relevant
configurations more rapidly than �a

������. Finally, the
PMFEX� model may also be useful for a charged impurity
ion in the cases where the PMFEX approximation deviates
from MD. An example is the case of strongly coupled sym-
metric TCPs with Z=1 and a small regularization parameter
� as considered in Ref. �18�.

For an application of the MFD obtained by the PMFEX
and PMFEX� schemes as the low-frequency contribution of
the microfield in spectra modeling several further improve-
ments would be desirable. In particular, for TCPs with high
ion charges, the TCP should be replaced by a multicompo-
nent plasma so that the actual charge-state distribution can be
taken into account. This would result in a much more realis-
tic description, which can be achieved by a corresponding
straightforward extension of the PMFEX� model together
with the implementation and evaluation of the HNC scheme
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for such a multicomponent plasma. Also the treatment of
quantum effects is a source of further improvement in par-
ticular when dense plasmas at relative low temperatures are
considered. Assuming that the connection between the RDFs
g�� and the MFD as established by the PMFEX and
PMFEX� models is �to some extent� also a reasonable ap-
proximation in the quantum case, the major task then con-
sists in the calculation of the correlation functions g�� by
means of a full quantum description. Both items should thus
be addressed in future studies of the MFD in strongly
coupled plasmas.

An additional item for further investigations is the devel-
opment of a theoretical model for the description of the MFD
in case of a two-temperature �nonequilibrium� TCP. This is
relevant in particular in the context of the spectroscopy of
laser-generated plasmas, where usually the electrons are rap-
idly heated up first while the ions still remain at a rather low
temperature. Assuming a transient quasistationary two-
temperature regime the radial distribution functions can be
calculated from HNC equations for a TCP with different
ionic and electronic temperatures, as has already been done
in Refs. �42,43�. There is, however, some additional theoret-
ical effort needed, since the calculation of the MFD cannot
be based on the canonical ensemble approach as in the out-
lined derivation of the PMFEX and PMFEX� models. Here,
a reasonable starting point might be the corresponding many-
particle kinetic equations in connection with the potential-of-
mean-force ansatz.
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APPENDIX: EXACT SECOND MOMENT FOR A NEUTRAL
RADIATOR

In this appendix we derive the exact second moment for
the MFD in the TCP at the neutral point. We use the exact
relation for the second moment derived in Ref. �18�:

�E2 =
kBTne

ZR	0
��

0

�

ũe�r�geR�r�dr − �
0

�

ũi�r�giR�r�dr� ,

�A1�

where ũ��r�=−�r2u�R� �r��� with �=e , i and the pair interac-
tion potentials u�R�r� are given by Eq. �4� with the regular-
ization parameters ��R.

The second moment �E2 is ill defined for the neutral-
point distribution since ZR→0 and g�R�r�→1 and the ex-
pression in brackets in Eq. �A1� vanishes in this case �this is
true for the Coulomb potential as well as for any potential
regularized at the origin�. To obtain the correct limit of Eq.
�A1� at ZR→0 we recall the definition of the correlation

functions g�R�r� �18�. At vanishing ZR this function reads

g�R�r� − 1 = −
ZReS

2

kBT �q�u�R�r� + 

�

q�n�� dr1u�R�r1�

��g����r − r1�� − 1�� + O�ZR
2� . �A2�

Here g���r� are the equilibrium correlation functions. Note
that the second term on the right-hand side of Eq. �A2� is the
excess potential energy of the TCP. In particular, using Eq.
�A2� it is straightforward to calculate the effective field E��r�
for the neutral point. Insertion of this relation into Eq. �28� in
the limit ZR→0 and for Coulomb electron-electron and ion-
ion interactions yields Eq. �27� with g�R�r�=1 �see also Eq.
�45��.

Now we substitute Eq. �A2� into Eq. �A1�. In the limit of
vanishing charge, ZR→0 this yields

�E2 = 4�

�

n��
0

�

E�
2�r�r2dr + 16�2ne

2eF
2

��

�
�

0

�

�g���r� − 1�����r�r dr

− 2�
0

�

�gei�r� − 1��ei�r�r dr� , �A3�

where E��r�=−q�eFu�R� �r� is the single-particle electric field
with qe=−1 and qi=Z, U��r�= �ru�R�r���, and

����r� =
1

2
�

0

�

�U���� − r�� − U��� + r��u�R���� d� .

�A4�

The first term in Eq. �A3� is the averaged density of the
electric microfield energy �self-energy�; the second one is
the density of the excess electric energy which appears
due to the correlations between plasma particles. Assuming
a regularized interaction potential �4�, we obtain U��r�
=e−r/��R /��R and

�ei�r� = 1 −
1

2
e−r/�iR −

e−r/�eR − e−r/�iR

2�1 − ��
−

e−r/�eR + �e−r/�iR

2�1 + ��
,

�A5�

����r� = 1 − �1 +
r

2��R
�e−r/��R. �A6�

Here �=�iR /�eR. In this case Eq. �A3� yields

�E2 = 2�neeF
2� 1

�eR
+

Z

�iR
� + 16�2ne

2eF
2

��

�
�

0

�

�g���r� − 1�����r�r dr

− 2�
0

�

�gei�r� − 1��ei�r�r dr� , �A7�

where ����r� and �ei�r� are now given by Eqs. �A5� and
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�A6�. The first term in Eq. �A7� is precisely the second mo-
ment of the Holtsmark distribution obtained in Ref. �18� for
the regularized interactions, which is independent of ZR. The
second term arises due to correlations between particles. For

the Coulomb interaction between plasma particles and the
radiator with �eR�0 or �iR�0 the first term in Eq. �A7�
diverges and the second moment of the MFD does not exist
in this case.
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